
 International Journal of Advanced and Applied Sciences, 4(9) 2017, Pages: 80-85

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

80

Automatic multiprogramming bad smell detection with refactoring

Amit Verma *, Ashish Kumar, Iqbaldeep Kaur

Department of Computer Science and Engineering, CGC Landran, Mohali-140307, Punjab, India

A R T I C L E I N F O A B S T R A C T

Article history:
Received 9 June 2017
Received in revised form
2 August 2017
Accepted 3 August 2017

A code smell detection and refactor is one of the very hot concepts in these
days. A Lot of researcher worked on it to create an automatic bad smell
detection and refactoring system. Main purpose behind the development of
these type of systems is to create automatic for enhance the development
quality of software systems. In the previous research the smell detection
system perform detection on specific areas or specific language. Due to this
companies needs to use more than one detector for software testing for large
projects. The system is combination of various modules which can be
developed in various languages. Our proposed method which is helpful their
users to test their code and detect bad smell on more than one language. It
acts as a bridge with some optimization techniques which provide highly
accurate working for smell detection along with refactoring. Proposed
approach uses optimization along with fact and rule programming to detect
and refactor the bad smell from input programs. Various bad smells like long
methods, dead code, lazy class, long class, etc. are used to check the quality of
the code. The proposed approach is also working for Java, c++ and c#.net
codes for the test all these bad smell and refactor c++ and Java code. The
performance of the proposed approach is also better than other existing
algorithms in terms of accuracy for detection and refactoring of bad smells.
Some other challenges that the proposed approach faced to find the smells in
the code also affect the performance. One of the main challenges is the way of
writing code is different for everyone. So it’s difficult to detect and refactor
the thing on smell detection tool. Proposed approach used fact and rule
processing for detection and eliminates unwanted entries with the help of
the optimization process. The performance in terms of accuracy and FAR,
FRR are stable and better for all the test cases in the comparison of existing
methods and proposed approach.

Keywords:
Index terms- Code smell (CS)
Lazy class
Long class
Optimization algorithm
FAR and FRR

© 2017 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

* Now a day's software has become a major part of
everyone’s life. The principle of the software is it
reliability to create our lives easier, efficiency and
gets better productivity.

Although, some efficiencies come at the most
expensive of all-encompassing viewers. The software
feature that is an achievement that human kind shall
never dis-remembers. The main area of the code is
some code smells that symbol of major architecture,
rules and adversely impact of structure quality. CS is
usually not exceptions, nor or neither are they
precisely not correct and do reverify the program
(Hazelwood and Smith, 2003). A code smells are less

* Corresponding Author.
Email Address: dramitverma.cu@gmail.com (A. Verma)
https://doi.org/10.21833/ijaas.2017.09.010
2313-626X/© 2017 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

better design that might be speed slower down along
with maximizing the high risk if exceptions or errors
in the future. The code smell has been distinct as
symbols of weak plan and program run able
selection. In some situations, such symbols might be
designed by events performed by developers while
at a distance, such as, design urgent patch / simplest
making sub choices (Chatzigeorgiou and Manakos,
2010).

Refactoring is definite that the easy and
meaningful design of existing code, without
modifying its behavior. It adds and changing their
code a lot by creating reappearances. But they don’t
use regular refactoring as it isn’t easy. This is since a
factored code inclines to rot. Several forms are
created by a factored / class, duplicate code and
some other phases of mixed up and discontinuous
(Counsell et al., 2011). All intervals of time the
modification of code without refactoring it, degrades
and dispersals. Code decay frustrates us along with

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dramitverma.cu@gmail.com
https://doi.org/10.21833/ijaas.2017.09.010
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2017.09.010&domain=pdf&

Verma et al/International Journal of Advanced and Applied Sciences, 4(9) 2017, Pages: 80-85

81

the expensive us time and smallest the lifetime of
useful system.

Detected code smells will differ depending on the
preferred likelihood threshold (Munro, 2005).
Growing the probability too much will reason more
false negative, while feeling it in excess will grounds
more false positives. It will be up to the developer to
fine adjust the threshold to get the sufficient level of
advice with respect to the occurrence of code smells.
It will also be up to the developer to choose the
sufficiency to relate a given refactoring to eliminate a
detected code smell.

2. Code smell classes types

Bad smells in software testing significant features
of testing module which are sometime causes hard to
maintain and design software systems. Here the
Fowler offers a new concept; in this concept various
types of bad smell are detected (Fokaefs et al., 2007).
Later, other authors detect other bad smells in the
program. The bad code smell in software testing
exactingly linked with exercise of refactoring bad
smells from the code, it helps to enhance the
working and quality of software systems. Various
developers are working for single software system
(Table 1). Here they identify some problem with the
software system which is known as bad smells, they
should appraise whether these problems can affect
the software system in terms of quality, their
functional work, performance and maintenance. This
metaphor technique can make the smell finding
technique easier and refector the smells from the
code (Tsantalis et al., 2008). In Software system the
bad smells are some problems which indicate
problems. It normally designates that software
system should refactor and system re-checked for
performance enhancement. This processing scheme
offered by Kent Beck. This process increases the

software quality by refactoring various bad smells.
The list of bad smells in software system areas.

 Long Parameter List: when the method is too

long means more number of lines of code.
 Large Class: Classes that have large numbers of

instance variables and large number of lines of
code. Due to large software system the large class
suffer from duplication of software codes.

 Long Parameters: In this lists the parameters are
very difficult to detect from a software system.
These are those methods which having parameters
more than the limit (Pérez et al., 2013).

 Comments: If the comments are present in the
code more than the lines of code.

 Switch Statements: Switch statements may
produce duplication. Sometime the similar
switches are placed on various locations in the
code. It can increase the maintenance cost of the
code module (Bakota et al., 2006).

 Lazy Class: Classes that are not doing much work
and a number of methods is null.

 Temporary Field: When some of the instance
variables in a class are only used occasionally.

 Duplicate Code: This smell is also very important
in software testing. Duplicate the code in a
software system make the update process harder.
Same code are placed more than once in the code
can increase the time of detection issues and
improvement of software systems.

 Dead Code: Sometime the software developer
designs some coding modules but didn’t use them
inside the system. Those modules which are not
used inside the code are known as dead code. Dead
code is increase the memory consumption and
operation cost of software system (Kim and Oh,
1997).

Table 1: Comparison of the various code smell detection tools

Code Smell Definition Variable used Results
LM

MWMLOC

CC,LOC,#M

LOC >50 then no variable used CC > 50

LPL

MCS

#P, ∑n POM, AP[10]

NOP > 7
∑n POM = 148
M in C = 88
AP = 3
#P > AP

LC

NETH

LOC, IV, DOI

LOC > 300
LM > 5
DIP> 3
coupling >10

DC

DNRC

UBoD[11]

UBoD =24

LaC

LaC should PR

#T, LOC

SoM ==0
LOC<=300
#M <=2

LCB

DECB

#UCB

TUCB = 5

DuC DuC exists if CMWO #DCB[12] T#DCB =19

LM- Long Method, MWMLOC-Method with
Maximum Lines of Code, CC- Cyclomatics

Complexity, LOC-Lines of Code, #M-Number of
Methods, LPL-Long Parameter List, MCS- Many

Verma et al/International Journal of Advanced and Applied Sciences, 4(9) 2017, Pages: 80-85

82

Constraints Passed, #P-Number of Parameter, POM-
Parameter of Method, AP-Average Parameter, LC-
Large Class, NETH-Not Enough To Handle, IV-
Instance Variable, DOI- Depth of Inheritance, UBoD-
Unused Block of Data, DC-Dead Code, DNRC-Delete
Not Required Code, LaC-Lazy Class, PR-
Predominantly Request, #T-Number of Technique,
SoM-Several of Method, WMC-Weighted Method
Count, #UCB-Number of Unused Catch Block, TUCB-
Total number of Unused Catch Block, LCB-Lazy Catch
Block, DECB- Discover Empty Catch Block, DuC-
Duplicate Code, CMWO- Code Match With Other,
#DCB-Number of Duplicate Code Block, T#DCB-
Total Number of Duplicate Code Block.

3. Literature review

dos Reis et al. (2016) presented conducted a
quasi-experiment by one hundred eighteen software
systems. Here the author detects various smells in
six different domains. Author used various testing
methods to find them from a large software system.
The ANOVA and Kruskal-Wallis tests are performed
for find the smells from a software system. Palomba
et al. (2013) worked on bug detection from a
software system. This process is prediction based
which are used to identify the smelly classes and list
them to make a list of various smells in the code. The
new method compared with other in terms of
various performance matrixes in this research. Vidal
et al. (2016) prioritizing the smells are process
according to their groups which might cause the
problems in software system. The detection of bad
smells is performed on JSpirit tool in this research.
Here more than 23 issues which identify the various
structural problems from the code. Fowler and Beck
(1999) identified various bad smells with some
refactoring processes. This process provides the
code modification on the basis of detected spots
from the code. This process used to improve the
performance of code with modification in the
external part and the internal part modified
automatically. This process eliminates the various
bad smells and reduces the unwanted memory
consumption and bugs. Van Emden and Moonen
(2002) detected some bad smells form the code
which is used to enhance the design and
development of software system. The author worked
on java platform with development of a prototype
known as jCOSMO. This process make the software
process lesser interms of cost and efforts along with
easy and efficient correction of bad smells.

4. Proposed model

In proposed work the process of detecting bad
smells is a combination of fact and rules with bees
colony optimization to detect and optimize for verify
various software modules to detect bad smells from
the code. The fact and rules are used to process the
code and make the software module identification
for multiple programming languages. The proposed
approach is also used some refactoring approach for

enhance the performance of software systems.
Programming languages are having different syntax
and program structure. The proposed approach
working with them on the basis of fact and rule
processing and design a bridge between software
module and detection network to enhance the
evaluation of bad smell detection. The proposed
method is able to work with C++, Java and .net
software system with refactoring for various bad
smells.

4.1. Bee colony algorithm

It consist group of employed bees, scout bees and
onlooker bees. The bees whose food sources left or
abandoned become scout and start searching the
new food source. Onlooker sees and analyses the
dance and select the food source accordingly. In
starting all the food sources are given to employed
bees. Then employed bees determine the other
source and nectar is produces and start work on that
hive. And then onlooker bees see the dance of
employed bees and choose the food source
accordingly. The empty food source is determined
and gets replaced with the scout food source which
has been searched by scout. By this process the best
food source found and get registers

4.2. Proposed methodology

The proposed flow chart describes the working of
smell detection for more than one language into
single tool. The stepwise working shows uploading
of software system and identifies modules from the
large systems. The fact and rule programming apply
on uploaded data and process with to design a
bridge between software modules and smell
processing system. Step 4 is used for analysis of
various smells from the code and optimize in next
step for verification of them. Verified data identified
from the software system and provide a output to
the user in terms of bad smell. Bad smells are
refector to improve the performance of software
system. Some limits are also used to calculate the
performance of proposed model and compared with
existing system to ensure the better performance.

Step 1: Code uploading for test cases. (Choose a
project for case study which is in c++, java and .net)
Step 2: verify various modules of code
Step 3: calculate software metrics based on fact and
rules technique.
Step 4: analysis of code on the behalf of software
metrics
Step 5: Optimization of various detected software
metrics using artificial bee’s colony algorithm.
Step 6: Comparative studies with various results
parameters.

5. Simulation results

The main page is a connection between all the
modules in the proposed approach (Fig. 1). It works

Verma et al/International Journal of Advanced and Applied Sciences, 4(9) 2017, Pages: 80-85

83

as a linker to call data from other forms or transmit
results from one to another form (Fig. 2). Project
upload panel is here and user can upload their
project for checking various test cases. Test window
is also working as a linker between test modules and
other parameter calculations. These are performing
and transfer their calculation results on this window
and here they are analyses and produce final results.

Fig. 1: Flow chart of proposed work

Fig. 2: Test window

The Fig. 3 shows that uploading source code
divided into classes and methods. According to an
abstract syntax tree; calculated object –oriented
matrices: LOC number in a method, total number of
variable, used variable, unused variable, Cyclomatic
complexity and Halstead efforts. Compare these
metrics with detection rules and threshold value.

Result occurred in rule wise. The other button
makes correction is used to refactor the code and
produce optimal output.

In Fig. 4 shows that, dead code means, remove
code i.e., not being second-hand. That's why used
source switch systems. The proposed approach is
detecting the dead code from a large code module

very efficiently. It shows the code from all the classes
in the project as shows in the code. The proposed
approach is also able to work on the whole project at
a time.

Fig. 3: Upload source code

Fig. 4: Types of code

In Fig. 5 described that lazy classes should

particularly requesting information from exacting
source their heaviness. Each included class enhances
the difficult of a project. A number of the method
==0, LOC<=300 and weighted method count or no. of
method <=2.

Fig. 5: Lazy class

The Fig. 6 shows the parameter calculation for

processing code modules. The performance of the
proposed approach is better as compared to the
existing approach in terms of various bad smells
detection and refectoring. Performance matrixes for
this are shown below.

Upload modules

Verification of software modules and
their calculations

Apply fact and rule to get Software metrics.

Optimization with bee’s colony optimization for
performance enhancement

Evaluate Parameters

Stop

Start

Verma et al/International Journal of Advanced and Applied Sciences, 4(9) 2017, Pages: 80-85

84

As in the Table 2 the features of proposed and
existing approach are compared. The existing system
is able to work with only on java. But as shown in
Table 2 the proposed algorithm having capability to
work with three different languages. net, java and
c++. The other enhancement is the existing method
is having capability to find and refector the long
method bad smell but in proposed enhancement the
proposed method working with four types of bad
smells with refactoring of them. The proposed
method is the proposed method is more accurate
and performing multiple testing tool’s functionality
in a single program.

Fig. 6: Performance parameters

The proposed approach is tested on various code
modules from java. C++ and .net programming.
Because every programming language is having their
own syntax to write a program so this process id

become little difficult to detect the various bad
smells from a coding module. The proposed
algorithm is working on the basis of fact and rules
programming to achieve this challenge for all the
programs.

Other parameters like accuracy, FRR, FAR are
also calculated for evaluation of performance in
terms of detection and refactoring various smells
from a code.

The performance accuracy in proposed approach
is maximum in the proposed graph as calculated
from the various test modules (Fig. 7 and Table 3).
The proposed approach is performing better than
existing in all the cases as it is shown in the graph for
software testing.

FRR is a false reject rate of an algorithm when it
works with real time tasks (Fig. 8). The high rate of
FRR causes less accuracy.

As in the proposed parameters the FRR is stable
at 0.003 so it can show accuracy more than 98 as in
the accuracy graph. The values in for proposed
graphs are shown in the matrix below (Table 4).

The False acceptance rate is also used to calculate
the performance of an algorithm (Fig. 9). Here on the
graph the value of FAR is stable or below 0.005. As in
the result the accuracy goes higher in overall results.
The fewer acceptances of unwanted samples in test
cases are optimizing the results of FAR in software
testing. The result table of all these values is shown
Table 5.

Table 2: Comparison of working features between base and proposed work

Bad Smells detection Base Proposed .net Java C++ Refectoring Proposed Refectoringbase
LM Y Y N Y N Y Y
LC N Y Y Y Y Y N

LoC N Y Y Y Y Y N
DC N Y Y Y Y Y N
BSD-Bad Smell Detection, LM-Long Method, LC-Lazy Class,LoC-Long Class, DC-Dead Code, Y-Yes, N-No

Fig. 7: Accuracy in proposed work

6. Conclusion and future scope

The proposed approach works with three
different languages and detects the various bad
smells from the code. The approach does refactoring
for c++ and Java programming languages along with
detection of code smell in .net projects. The

proposed hybrid approach detects bad smells as long
method, lazy class, dead code, long class from
uploaded projects and refactors some of them. The
proposed algorithm performs both detection and
optimization for all the cases to enhance the output
of these parameters.

Fig. 8: False rejection rate

98.8

99

99.2

99.4

99.6

99.8

100

100.2

1 2 3 4

%

Test case

Accuracy

Proposed

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

1 2 3 4

F
R

R

Test case

FRR

Proposed

Verma et al/International Journal of Advanced and Applied Sciences, 4(9) 2017, Pages: 80-85

85

Table 3: Accuracy in proposed work

1 2 3 4

Proposed 99.19 99.36 99.685 99.956

Table 4: False rejection rate in proposed work

1 2 3 4

Proposed 0.00305 0.00307 0.00378 0.00299

The overall output of proposed approach has
been better than other existing approaches and also
performs better detection than existing tool in terms
of programming languages.

Fig. 9: False acceptance rate

Table 5: False acceptance rate

1 2 3 4

Proposed 0.00505 0.005 0.00458 0.00316

In future, the performance can be optimized

through some other optimization algorithms like
Genetic algorithm and refactoring of bad smells for
some other parameters of code can be done. The
performance of proposed algorithm can also be
enhanced through adding some other bad smells in
the code as lots of other parameters are in the code
smell testing.

References

Bakota T, Ferenc R, Gyimothy T, Riva C, and Xu J (2006). Towards
portable metrics-based models for software maintenance
problems. In the 22nd IEEE International Conference on
Software Maintenance, IEEE, Philadelphia, USA: 483-486.
https://doi.org/10.1109/ICSM.2006.69

Chatzigeorgiou A and Manakos A (2010). Investigating the
evolution of bad smells in object-oriented code. In the 7th
International Conference on Quality of Information and
Communications Technology, IEEE, Porto, Portugal: 106-115.
https://doi.org/10.1109/QUATIC.2010.16

Counsell S, Hierons RM, Hamza H, Black S, and Durrand M (2011).
Exploring the eradication of code smells: An empirical and
theoretical perspective. Advances in Software Engineering,
2010: Article ID 820103, 12 pages. https://doi.org/
10.1155/2010/820103

dos Reis JP, e Abreu FB, and Carneiro GDF (2016). Code smells
incidence: Does it depend on the application domain?. In the
10th International Conference on the Quality of Information
and Communications Technology, IEEE, Lisbon, Portugal: 172-
177. https://doi.org/10.1109/QUATIC.2016.044

Fokaefs M, Tsantalis N, and Chatzigeorgiou A (2007). Jdeodorant:
Identification and removal of feature envy bad smells. In the
IEEE International Conference on Software Maintenance,
IEEE, Paris, France: 519-520. https://doi.org/
10.1109/ICSM.2007.4362679

Fowler M and Beck K (1999). Refactoring: improving the design of
existing code. Addison-Wesley Professional, Boston,
Massachusetts, USA.

Hazelwood K and Smith MD (2003). Generational cache
management of code traces in dynamic optimization systems.
In the 36th annual IEEE/ACM International Conference on
Microarchitecture, IEEE, San Diego, USA. https://doi.org
/10.1109/MICRO.2003.1253193

Kim J and Oh S (1997). EM-code optimization algorithm using tree
pattern matching. In the International Conference on
Information, Communications and Signal Processing, IEEE,
Singapore, Singapore, 2: 917-923. https://doi.org/
10.1109/ICICS.1997.652113

Munro MJ (2005). Product metrics for automatic identification of"
bad smell" design problems in java source-code. In 11th IEEE
International Symposium Software Metrics, IEEE, Como, Italy:
15-15. https://doi.org/10.1109/METRICS.2005.38

Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, and
Poshyvanyk D (2013). Detecting bad smells in source code
using change history information. In the IEEE/ACM 28th

International Conference on Automated Software Engineering,
IEEE, Silicon Valley, USA: 268-278. https://doi.org/10.1109/
ASE.2013.6693086

Pérez J, Murgia A, and Demeyer S (2013). A proposal for fixing
design smells using software refactoring history. In RefTest
2013: International Workshop on Refactoring & Testing.
Universitas Antwerpen Antwerpen, Belgium.

Tsantalis N, Chaikalis T, and Chatzigeorgiou A (2008). JDeodorant:
Identification and removal of type-checking bad smells. In 12th
European Conference on Software Maintenance and
Reengineering, IEEE, Athens, Greece: 329-331.
https://doi.org/10.1109/CSMR.2008.4493342

Van Emden E and Moonen L (2002). Java quality assurance by
detecting code smells. In the 9th Working Conference on
Reverse Engineering, IEEE, Richmond, USA: 97-106.
https://doi.org/10.1109/WCRE.2002.1173068

Vidal SA, Marcos C, and Díaz-Pace JA (2016). An approach to
prioritize code smells for refactoring. Automated Software
Engineering, 23(3): 501-532.

0

0.001

0.002

0.003

0.004

0.005

0.006

1 2 3 4

A
x

is
 T

it
le

Axis Title

FAR

Proposed

https://www.google.com/search?biw=1280&bih=556&q=Boston&stick=H4sIAAAAAAAAAOPgE-LSz9U3ME6qMDbMU-IAsQ2TK-K1jDLKrfST83NyUpNLMvPz9POL0hPzMqsSQZxiq4zUxJTC0sSiktSiYoWc_GSwMAAh2EjuTAAAAA&sa=X&ved=0ahUKEwjvtNfc86PVAhXMuhQKHUIKAQsQmxMIhQEoATAP
https://www.google.com/search?biw=1280&bih=556&q=Boston&stick=H4sIAAAAAAAAAOPgE-LSz9U3ME6qMDbMU-IAsQ2TK-K1jDLKrfST83NyUpNLMvPz9POL0hPzMqsSQZxiq4zUxJTC0sSiktSiYoWc_GSwMAAh2EjuTAAAAA&sa=X&ved=0ahUKEwjvtNfc86PVAhXMuhQKHUIKAQsQmxMIhQEoATAP

	Automatic multiprogramming bad smell detection with refactoring
	Introduction
	Code smell classes types
	Literature review
	Proposed model
	Bee colony algorithm
	Proposed methodology

	Simulation results
	Conclusion and future scope
	References

